Arc Length and Degrees to Radians

Degrees to Radians

Multiply the degree by $\pi/180$

Radians to degrees

Multiply radian by 180/π

1.What is 150° in radians

$$\frac{150}{180} = \frac{1}{180}$$

4. What is $4\pi/3$ in degrees

2. What is 255° in radians

$$\frac{255^{\circ}}{1} \cdot \frac{17}{180}$$

$$\frac{255^{\circ}}{180} = \frac{1717}{12}$$

3. What is 120° in radians

$$\frac{1}{180}$$
 $\frac{1}{180}$ $\frac{1}{180}$ $\frac{2\pi}{3}$

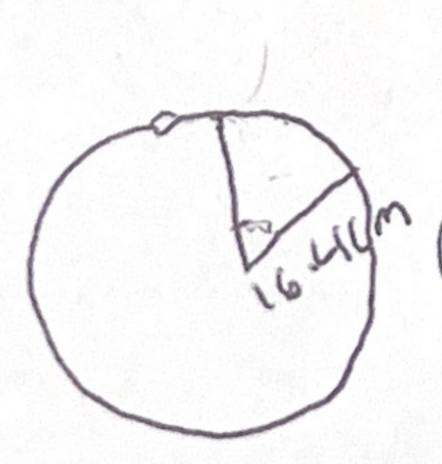
4. What is $4\pi/3$ in degrees

5. What is $2\pi/3$ in degrees

6. What is $11\pi/6$ in degrees

$$\frac{4\pi}{3} \cdot \frac{180}{17}$$
 $\frac{720}{3} = (240)$
 $\frac{360}{3} = (120)$

uses


Arc Length

Formula: $S = r \times \theta$

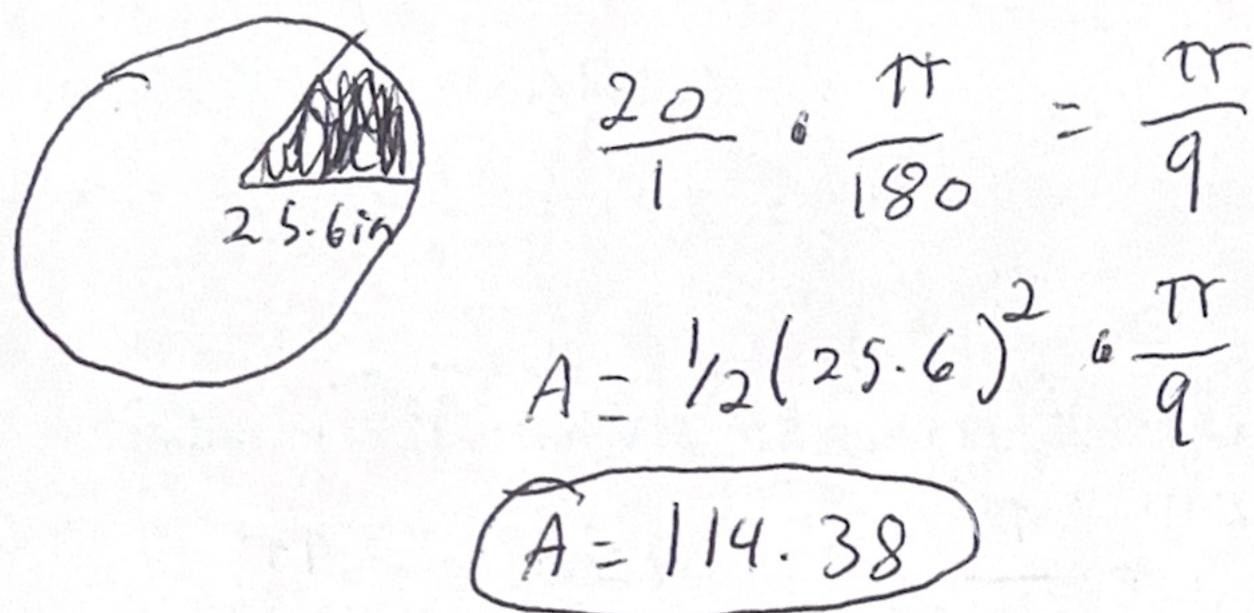
A) $5\pi/4$

*Theta HAS to be in the the s

1. If a circle has a radius of 16.40cm find the arc length of the two degrees below.

C) $3\pi/2$

$$\frac{3577.16.40}{36}$$


Area of a Sector

9 has to be in radians!

Charles

Formula: $A = \frac{1}{2} r^2 \theta$

If a circle has a radius of 25.60inch, what is the Area of the sector if is $\theta=20^{\circ}$?

If a circle has a radius of 34.53cm, what is the area of the sector if is $\theta=45^{\circ}$?

$$\frac{45}{1} \cdot \frac{17}{180} = \frac{17}{4}$$

$$A = \frac{1}{2} \frac{(34.53)^2}{4} = \frac{17}{4}$$

$$A = \frac{468.22}{4}$$